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Dose escalation introduction

• Preclinical studies provide information on:
– Starting dose (S9)
– Estimated exposures for on- and off-target toxicity
– Potential shape of dose-toxicity relationship

• Predefine dose levels for study
– 100% steps until grade 2, then 50% steps
– Modified Fibonacci sequence
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Finding maximum tolerated dose

Dose
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algorithm
MTD
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Phase I dose escalation

e.g., 3+3 design
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Dose escalation using safety

If DLT is the primary endpoint – you can still do MUCH better!

1.Model-based dose-DLT relationships 
• Bayesian logistic regression model (BLRM) (Neuenschwander 2008)

• Incorporate mixture priors accounting for species variability
• Allow for a variety of shape parameters reflecting uncertainty
• Adaptive dose-levels and cohort sizes
• Exchangeability extensions to share information across populations (Neuenschwander 2016)

• Can be integrated with other data for weighted decision-making

2. Integrate real-time PK data into dose-safety modeling
• Covariate in dose-DLT model (e.g., Piantadosi and Liu, 1996)
• Hierarchical dose-exposure-DLT model (e.g., Ursino et al., 2017)
• Indirectly into decision process (e.g., Cotterill et al., 2015)
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What if we use all data to guide dose 
recommendations?

Recommended 
Dose

Safety
(AE, SAE,

DLT)

Tolerability
(Interruptions,
Reductions,

RDI)

Pharmaco-
kinetics

(AUC, Cmax, 
Ctrough, t1/2, 

etc)

Pharmaco-
dynamics
(pathway 

biomarkers)

Efficacy
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Integrated modeling approach drives dose 
selection

6

Dose DLT

PK

Tumor 
Growth Target PD

Safety PD

Preclinical tumor 
growth inhibition

BLRM

popPK/PD

popPK/PDpopPK/tumor

American Society for Clinical Pharmacology and Therapeutics 2018 | Bailey – Bayesian oncology designs | March 24, 2018



Integrated modeling approach drives dose 
selection
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Dose DLT
BLRM

200 mg 300 mg 400 mg 500 mg 600 mg

BLRM

At most 100% per protocol

QD data
10 mg 1 pt, 0 DLT
20 mg 2 pts, 0 DLT
40 mg 2 pts, 0 DLT
60 mg 3 pts, 0 DLT
100 mg 3 pts, 0 DLT
200 mg 4 pts, 0 DLTMouse MTD ~ 100 mg QD

Dog MTD ~ 350 mg QD
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Integrated modeling approach drives dose 
selection
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Dose

PK

BLRM

200 mg 300 mg 400 mg 500 mg 600 mg

DLT

BLRM

At most 100% per protocol

Preclinical 
species variability

PK

QD data
10 mg 1 pt, 0 DLT
20 mg 2 pts, 0 DLT
40 mg 2 pts, 0 DLT
60 mg 3 pts, 0 DLT
100 mg 3 pts, 0 DLT
200 mg 4 pts, 0 DLTMouse MTD ~ 100 mg QD

Dog MTD ~ 350 mg QD

AUC increases proportionally
Estimated AUC@400 mg exceeds
Dog MTD exposure, 350 mg is OK 
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Integrated modeling approach drives dose 
selection
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Dose

PK

BLRM

200 mg 300 mg 400 mg 500 mg 600 mg

DLT

BLRM

At most 100% per protocol

PK

Safety PD
popPK/PD

labs

QD data
10 mg 1 pt, 0 DLT
20 mg 2 pts, 0 DLT
40 mg 2 pts, 0 DLT
60 mg 3 pts, 0 DLT
100 mg 3 pts, 0 DLT
200 mg 4 pts, 0 DLTMouse MTD ~ 100 mg QD

Dog MTD ~ 350 mg QD

popPK-platelet model estimates
P(gr 3 thrombocytopenia) > 25% at 
doses above 300 mg given lab data

Preclinical 
species variability

AUC increases proportionally
Estimated AUC@400 mg exceeds
Dog MTD exposure, 350 mg is OK 
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Potential to augment decision making using 
PK/PD
• Example: data available for doses up to 4.4 mg/kg

– BLRM reflects low risk given no observed DLT
– Semi mechanistic PKPD model predicts potential increased risk of thrombocytopenia at higher 

doses based on all platelet and exposure data
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a) BLRM b) PKPD-thrombocytopenia

Risk of overdose at each dose level is displayed in red
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Target PD

Integrated modeling approach drives dose 
selection
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Dose

PK

BLRM

200 mg 300 mg 400 mg 500 mg 600 mg

DLT

BLRM

At most 100% per protocol

QD data
10 mg 1 pt, 0 DLT
20 mg 2 pts, 0 DLT
40 mg 2 pts, 0 DLT
60 mg 3 pts, 0 DLT
100 mg 3 pts, 0 DLT
200 mg 4 pts, 0 DLTMouse MTD ~ 100 mg QD

Dog MTD ~ 350 mg QD

PK

Safety PD
popPK/PD

popPK-platelet model estimates
P(gr 3 thrombocytopenia) > 25% at 
doses above 300 mg given lab data

labs

Target PD

popPK/PD

P(achieve target BM change) > 90%
at doses > 240 mg QD

Potential TI

Preclinical 
species variability

AUC increases proportionally
Estimated AUC@400 mg exceeds
Dog MTD exposure, 350 mg is OK 
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Target PD

Integrated modeling approach drives dose 
selection
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Dose

PK

BLRM

200 mg 300 mg 400 mg 500 mg 600 mg

DLT

BLRM

At most 100% per protocol

PK

Safety PD
popPK/PD

labs

Target PD

popPK/PD

Tumor 
Growth

Preclinical tumor 
growth inhibition

popPK/tumor
Patient heterogeneity?

What have we seen 
to date? 
- CR/PR? Reduction in SLD?

Impact of regimen changes?
- Switch from QD to BID

Potential TI

Do we have a good model to relate 
PD and anti-tumor activity?
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Integrated modeling approach drives dose 
selection
• Refer to Meille et al. (2017) at AACR

– Provided an overview of an integrated modeling approach to address choice of dose and 
schedule supported by multiple PopPK/PD models

– Safety supported by Bayesian logistic regression model with MAP sharing across regimens 
(Neuenschwander et al., 2008 and 2010)
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Dose PK PD (GDF-15)

Tumor growth

PopPK

PLT

PLT popPK/PD

PopPK/tumor

Preclinical
tumor growth 

inhibition
GDF-15 

PopPK/PD
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Establishing a therapeutic window from 
within phase I - challenges
• Mixed patient populations (e.g., advanced solid tumors)

– Need to enrich disease sub-groups at one or more dose levels

• Variability within a patient population
– Baseline prognostic risk factors for both safety (e.g., laboratory markers) and early progression 

(e.g., immune-environment)

• Model-based approaches are particularly useful to support combination 
strategy
– Integrate preclinical synergistic modeling

– Therapeutic window may shift from single-agent exposures

– Incorporate real-time PK-DDI and PK/PD modeling  

• Identification of a therapeutic window uses a holistic understanding of all 
the data
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Regional exchangeability in dose-escalation

• Assume the potential for similarity (EX) and then seek to see if there is 
evidence of a difference (NEX)
– Ethnic sensitivity can be in:

– Dose-Exposure, Exposure-Safety, Exposure-Activity and more...
– Supplement dose-safety with additional (pop)PK, (pop)PK/PD, E-R modeling and explore across 

phase I/II

100mg

600mg

200mg

400mg

Western

Japanese
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Exchangeability in dose-expansions

• Model based approach facilitates decision making
– For example: stopping indications for Futility

• Borrowing of information within ‘clusters’ can increase accuracy of 
estimation of treatment effect
– Better decision making
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Multiple combinations in one protocol
On what endpoint should we cluster?
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Conclusions

• Can’t forget safety but..

• We have had to move beyond the “more-is-better” mindset and must be 
smarter in designing and running dose-finding studies

• Complementary modeling approaches can be used to support decision 
making while safety risks are controlled

• Need to make better use of methodologies to deal with indirect 
comparisons when addressing patient heterogeneity and non-
contemporary data 

• May need to study more than one dose level or regimen within phase II or 
pivotal studies
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